3.2.19 \(\int \frac {x^4 (A+B x^2)}{(a+b x^2+c x^4)^2} \, dx\) [119]

3.2.19.1 Optimal result
3.2.19.2 Mathematica [A] (verified)
3.2.19.3 Rubi [A] (verified)
3.2.19.4 Maple [C] (verified)
3.2.19.5 Fricas [B] (verification not implemented)
3.2.19.6 Sympy [F(-1)]
3.2.19.7 Maxima [F]
3.2.19.8 Giac [B] (verification not implemented)
3.2.19.9 Mupad [B] (verification not implemented)

3.2.19.1 Optimal result

Integrand size = 25, antiderivative size = 336 \[ \int \frac {x^4 \left (A+B x^2\right )}{\left (a+b x^2+c x^4\right )^2} \, dx=-\frac {(b B-2 A c) x}{2 c \left (b^2-4 a c\right )}-\frac {x^3 \left (A b-2 a B-(b B-2 A c) x^2\right )}{2 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}+\frac {\left (b^2 B+A b c-6 a B c-\frac {b^3 B+A b^2 c-8 a b B c+4 a A c^2}{\sqrt {b^2-4 a c}}\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{2 \sqrt {2} c^{3/2} \left (b^2-4 a c\right ) \sqrt {b-\sqrt {b^2-4 a c}}}+\frac {\left (b^2 B+A b c-6 a B c+\frac {b^3 B+A b^2 c-8 a b B c+4 a A c^2}{\sqrt {b^2-4 a c}}\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b+\sqrt {b^2-4 a c}}}\right )}{2 \sqrt {2} c^{3/2} \left (b^2-4 a c\right ) \sqrt {b+\sqrt {b^2-4 a c}}} \]

output
-1/2*(-2*A*c+B*b)*x/c/(-4*a*c+b^2)-1/2*x^3*(A*b-2*B*a-(-2*A*c+B*b)*x^2)/(- 
4*a*c+b^2)/(c*x^4+b*x^2+a)+1/4*arctan(x*2^(1/2)*c^(1/2)/(b-(-4*a*c+b^2)^(1 
/2))^(1/2))*(B*b^2+A*b*c-6*B*a*c+(-4*A*a*c^2-A*b^2*c+8*B*a*b*c-B*b^3)/(-4* 
a*c+b^2)^(1/2))/c^(3/2)/(-4*a*c+b^2)*2^(1/2)/(b-(-4*a*c+b^2)^(1/2))^(1/2)+ 
1/4*arctan(x*2^(1/2)*c^(1/2)/(b+(-4*a*c+b^2)^(1/2))^(1/2))*(B*b^2+A*b*c-6* 
B*a*c+(4*A*a*c^2+A*b^2*c-8*B*a*b*c+B*b^3)/(-4*a*c+b^2)^(1/2))/c^(3/2)/(-4* 
a*c+b^2)*2^(1/2)/(b+(-4*a*c+b^2)^(1/2))^(1/2)
 
3.2.19.2 Mathematica [A] (verified)

Time = 0.59 (sec) , antiderivative size = 362, normalized size of antiderivative = 1.08 \[ \int \frac {x^4 \left (A+B x^2\right )}{\left (a+b x^2+c x^4\right )^2} \, dx=\frac {\frac {2 \sqrt {c} \left (-a b B x+b (-b B+A c) x^3+2 a c x \left (A+B x^2\right )\right )}{\left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}+\frac {\sqrt {2} \left (-b^3 B+b c \left (8 a B+A \sqrt {b^2-4 a c}\right )+b^2 \left (-A c+B \sqrt {b^2-4 a c}\right )-2 a c \left (2 A c+3 B \sqrt {b^2-4 a c}\right )\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{\left (b^2-4 a c\right )^{3/2} \sqrt {b-\sqrt {b^2-4 a c}}}+\frac {\sqrt {2} \left (b^3 B+2 a c \left (2 A c-3 B \sqrt {b^2-4 a c}\right )+b^2 \left (A c+B \sqrt {b^2-4 a c}\right )+b \left (-8 a B c+A c \sqrt {b^2-4 a c}\right )\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b+\sqrt {b^2-4 a c}}}\right )}{\left (b^2-4 a c\right )^{3/2} \sqrt {b+\sqrt {b^2-4 a c}}}}{4 c^{3/2}} \]

input
Integrate[(x^4*(A + B*x^2))/(a + b*x^2 + c*x^4)^2,x]
 
output
((2*Sqrt[c]*(-(a*b*B*x) + b*(-(b*B) + A*c)*x^3 + 2*a*c*x*(A + B*x^2)))/((b 
^2 - 4*a*c)*(a + b*x^2 + c*x^4)) + (Sqrt[2]*(-(b^3*B) + b*c*(8*a*B + A*Sqr 
t[b^2 - 4*a*c]) + b^2*(-(A*c) + B*Sqrt[b^2 - 4*a*c]) - 2*a*c*(2*A*c + 3*B* 
Sqrt[b^2 - 4*a*c]))*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b - Sqrt[b^2 - 4*a*c]] 
])/((b^2 - 4*a*c)^(3/2)*Sqrt[b - Sqrt[b^2 - 4*a*c]]) + (Sqrt[2]*(b^3*B + 2 
*a*c*(2*A*c - 3*B*Sqrt[b^2 - 4*a*c]) + b^2*(A*c + B*Sqrt[b^2 - 4*a*c]) + b 
*(-8*a*B*c + A*c*Sqrt[b^2 - 4*a*c]))*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b + S 
qrt[b^2 - 4*a*c]]])/((b^2 - 4*a*c)^(3/2)*Sqrt[b + Sqrt[b^2 - 4*a*c]]))/(4* 
c^(3/2))
 
3.2.19.3 Rubi [A] (verified)

Time = 0.59 (sec) , antiderivative size = 318, normalized size of antiderivative = 0.95, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {1598, 1602, 25, 1480, 218}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^4 \left (A+B x^2\right )}{\left (a+b x^2+c x^4\right )^2} \, dx\)

\(\Big \downarrow \) 1598

\(\displaystyle \frac {\int \frac {x^2 \left (3 (A b-2 a B)-(b B-2 A c) x^2\right )}{c x^4+b x^2+a}dx}{2 \left (b^2-4 a c\right )}-\frac {x^3 \left (-2 a B-\left (x^2 (b B-2 A c)\right )+A b\right )}{2 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}\)

\(\Big \downarrow \) 1602

\(\displaystyle \frac {-\frac {\int -\frac {\left (B b^2+A c b-6 a B c\right ) x^2+a (b B-2 A c)}{c x^4+b x^2+a}dx}{c}-\frac {x (b B-2 A c)}{c}}{2 \left (b^2-4 a c\right )}-\frac {x^3 \left (-2 a B-\left (x^2 (b B-2 A c)\right )+A b\right )}{2 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\frac {\int \frac {\left (B b^2+A c b-6 a B c\right ) x^2+a (b B-2 A c)}{c x^4+b x^2+a}dx}{c}-\frac {x (b B-2 A c)}{c}}{2 \left (b^2-4 a c\right )}-\frac {x^3 \left (-2 a B-\left (x^2 (b B-2 A c)\right )+A b\right )}{2 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}\)

\(\Big \downarrow \) 1480

\(\displaystyle \frac {\frac {\frac {1}{2} \left (-\frac {4 a A c^2-8 a b B c+A b^2 c+b^3 B}{\sqrt {b^2-4 a c}}-6 a B c+A b c+b^2 B\right ) \int \frac {1}{c x^2+\frac {1}{2} \left (b-\sqrt {b^2-4 a c}\right )}dx+\frac {1}{2} \left (\frac {4 a A c^2-8 a b B c+A b^2 c+b^3 B}{\sqrt {b^2-4 a c}}-6 a B c+A b c+b^2 B\right ) \int \frac {1}{c x^2+\frac {1}{2} \left (b+\sqrt {b^2-4 a c}\right )}dx}{c}-\frac {x (b B-2 A c)}{c}}{2 \left (b^2-4 a c\right )}-\frac {x^3 \left (-2 a B-\left (x^2 (b B-2 A c)\right )+A b\right )}{2 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}\)

\(\Big \downarrow \) 218

\(\displaystyle \frac {\frac {\frac {\left (-\frac {4 a A c^2-8 a b B c+A b^2 c+b^3 B}{\sqrt {b^2-4 a c}}-6 a B c+A b c+b^2 B\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{\sqrt {2} \sqrt {c} \sqrt {b-\sqrt {b^2-4 a c}}}+\frac {\left (\frac {4 a A c^2-8 a b B c+A b^2 c+b^3 B}{\sqrt {b^2-4 a c}}-6 a B c+A b c+b^2 B\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {\sqrt {b^2-4 a c}+b}}\right )}{\sqrt {2} \sqrt {c} \sqrt {\sqrt {b^2-4 a c}+b}}}{c}-\frac {x (b B-2 A c)}{c}}{2 \left (b^2-4 a c\right )}-\frac {x^3 \left (-2 a B-\left (x^2 (b B-2 A c)\right )+A b\right )}{2 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}\)

input
Int[(x^4*(A + B*x^2))/(a + b*x^2 + c*x^4)^2,x]
 
output
-1/2*(x^3*(A*b - 2*a*B - (b*B - 2*A*c)*x^2))/((b^2 - 4*a*c)*(a + b*x^2 + c 
*x^4)) + (-(((b*B - 2*A*c)*x)/c) + (((b^2*B + A*b*c - 6*a*B*c - (b^3*B + A 
*b^2*c - 8*a*b*B*c + 4*a*A*c^2)/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c] 
*x)/Sqrt[b - Sqrt[b^2 - 4*a*c]]])/(Sqrt[2]*Sqrt[c]*Sqrt[b - Sqrt[b^2 - 4*a 
*c]]) + ((b^2*B + A*b*c - 6*a*B*c + (b^3*B + A*b^2*c - 8*a*b*B*c + 4*a*A*c 
^2)/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b + Sqrt[b^2 - 4*a* 
c]]])/(Sqrt[2]*Sqrt[c]*Sqrt[b + Sqrt[b^2 - 4*a*c]]))/c)/(2*(b^2 - 4*a*c))
 

3.2.19.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 1480
Int[((d_) + (e_.)*(x_)^2)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] : 
> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[(e/2 + (2*c*d - b*e)/(2*q))   Int[1/( 
b/2 - q/2 + c*x^2), x], x] + Simp[(e/2 - (2*c*d - b*e)/(2*q))   Int[1/(b/2 
+ q/2 + c*x^2), x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] 
 && NeQ[c*d^2 - a*e^2, 0] && PosQ[b^2 - 4*a*c]
 

rule 1598
Int[((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)*((a_) + (b_.)*(x_)^2 + (c_.)*( 
x_)^4)^(p_.), x_Symbol] :> Simp[f*(f*x)^(m - 1)*(a + b*x^2 + c*x^4)^(p + 1) 
*((b*d - 2*a*e - (b*e - 2*c*d)*x^2)/(2*(p + 1)*(b^2 - 4*a*c))), x] - Simp[f 
^2/(2*(p + 1)*(b^2 - 4*a*c))   Int[(f*x)^(m - 2)*(a + b*x^2 + c*x^4)^(p + 1 
)*Simp[(m - 1)*(b*d - 2*a*e) - (4*p + 4 + m + 1)*(b*e - 2*c*d)*x^2, x], x], 
 x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b^2 - 4*a*c, 0] && LtQ[p, -1] && 
 GtQ[m, 1] && IntegerQ[2*p] && (IntegerQ[p] || IntegerQ[m])
 

rule 1602
Int[((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)*((a_) + (b_.)*(x_)^2 + (c_.)*( 
x_)^4)^(p_), x_Symbol] :> Simp[e*f*(f*x)^(m - 1)*((a + b*x^2 + c*x^4)^(p + 
1)/(c*(m + 4*p + 3))), x] - Simp[f^2/(c*(m + 4*p + 3))   Int[(f*x)^(m - 2)* 
(a + b*x^2 + c*x^4)^p*Simp[a*e*(m - 1) + (b*e*(m + 2*p + 1) - c*d*(m + 4*p 
+ 3))*x^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, p}, x] && NeQ[b^2 - 4*a*c 
, 0] && GtQ[m, 1] && NeQ[m + 4*p + 3, 0] && IntegerQ[2*p] && (IntegerQ[p] | 
| IntegerQ[m])
 
3.2.19.4 Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 0.13 (sec) , antiderivative size = 178, normalized size of antiderivative = 0.53

method result size
risch \(\frac {-\frac {\left (A b c +2 B a c -B \,b^{2}\right ) x^{3}}{2 c \left (4 a c -b^{2}\right )}-\frac {a \left (2 A c -B b \right ) x}{2 \left (4 a c -b^{2}\right ) c}}{c \,x^{4}+b \,x^{2}+a}+\frac {\munderset {\textit {\_R} =\operatorname {RootOf}\left (c \,\textit {\_Z}^{4}+\textit {\_Z}^{2} b +a \right )}{\sum }\frac {\left (-\frac {\left (A b c -6 B a c +B \,b^{2}\right ) \textit {\_R}^{2}}{4 a c -b^{2}}+\frac {a \left (2 A c -B b \right )}{4 a c -b^{2}}\right ) \ln \left (x -\textit {\_R} \right )}{2 c \,\textit {\_R}^{3}+\textit {\_R} b}}{4 c}\) \(178\)
default \(\frac {-\frac {\left (A b c +2 B a c -B \,b^{2}\right ) x^{3}}{2 c \left (4 a c -b^{2}\right )}-\frac {a \left (2 A c -B b \right ) x}{2 \left (4 a c -b^{2}\right ) c}}{c \,x^{4}+b \,x^{2}+a}+\frac {\frac {\left (-A b c \sqrt {-4 a c +b^{2}}-4 A a \,c^{2}-A \,b^{2} c +6 B a c \sqrt {-4 a c +b^{2}}-B \,b^{2} \sqrt {-4 a c +b^{2}}+8 B a b c -B \,b^{3}\right ) \sqrt {2}\, \arctan \left (\frac {c x \sqrt {2}}{\sqrt {\left (b +\sqrt {-4 a c +b^{2}}\right ) c}}\right )}{4 c \sqrt {-4 a c +b^{2}}\, \sqrt {\left (b +\sqrt {-4 a c +b^{2}}\right ) c}}-\frac {\left (-A b c \sqrt {-4 a c +b^{2}}+4 A a \,c^{2}+A \,b^{2} c +6 B a c \sqrt {-4 a c +b^{2}}-B \,b^{2} \sqrt {-4 a c +b^{2}}-8 B a b c +B \,b^{3}\right ) \sqrt {2}\, \operatorname {arctanh}\left (\frac {c x \sqrt {2}}{\sqrt {\left (-b +\sqrt {-4 a c +b^{2}}\right ) c}}\right )}{4 c \sqrt {-4 a c +b^{2}}\, \sqrt {\left (-b +\sqrt {-4 a c +b^{2}}\right ) c}}}{4 a c -b^{2}}\) \(359\)

input
int(x^4*(B*x^2+A)/(c*x^4+b*x^2+a)^2,x,method=_RETURNVERBOSE)
 
output
(-1/2*(A*b*c+2*B*a*c-B*b^2)/c/(4*a*c-b^2)*x^3-1/2*a*(2*A*c-B*b)/(4*a*c-b^2 
)/c*x)/(c*x^4+b*x^2+a)+1/4/c*sum((-(A*b*c-6*B*a*c+B*b^2)/(4*a*c-b^2)*_R^2+ 
a*(2*A*c-B*b)/(4*a*c-b^2))/(2*_R^3*c+_R*b)*ln(x-_R),_R=RootOf(_Z^4*c+_Z^2* 
b+a))
 
3.2.19.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 4658 vs. \(2 (292) = 584\).

Time = 2.31 (sec) , antiderivative size = 4658, normalized size of antiderivative = 13.86 \[ \int \frac {x^4 \left (A+B x^2\right )}{\left (a+b x^2+c x^4\right )^2} \, dx=\text {Too large to display} \]

input
integrate(x^4*(B*x^2+A)/(c*x^4+b*x^2+a)^2,x, algorithm="fricas")
 
output
-1/4*(2*(B*b^2 - (2*B*a + A*b)*c)*x^3 + sqrt(1/2)*((b^2*c^2 - 4*a*c^3)*x^4 
 + a*b^2*c - 4*a^2*c^2 + (b^3*c - 4*a*b*c^2)*x^2)*sqrt(-(B^2*b^5 - 12*(4*A 
*B*a^2 - A^2*a*b)*c^3 + (60*B^2*a^2*b - 12*A*B*a*b^2 + A^2*b^3)*c^2 - (15* 
B^2*a*b^3 - 2*A*B*b^4)*c + (b^6*c^3 - 12*a*b^4*c^4 + 48*a^2*b^2*c^5 - 64*a 
^3*c^6)*sqrt((B^4*b^4 + A^4*c^4 - 2*(9*A^2*B^2*a - 2*A^3*B*b)*c^3 + 3*(27* 
B^4*a^2 - 12*A*B^3*a*b + 2*A^2*B^2*b^2)*c^2 - 2*(9*B^4*a*b^2 - 2*A*B^3*b^3 
)*c)/(b^6*c^6 - 12*a*b^4*c^7 + 48*a^2*b^2*c^8 - 64*a^3*c^9)))/(b^6*c^3 - 1 
2*a*b^4*c^4 + 48*a^2*b^2*c^5 - 64*a^3*c^6))*log(-(5*B^4*a*b^4 - 3*A*B^3*b^ 
5 - 4*A^4*a*c^4 + (20*A^3*B*a*b - 3*A^4*b^2)*c^3 + 3*(108*B^4*a^3 - 108*A* 
B^3*a^2*b + 28*A^2*B^2*a*b^2 - 3*A^3*B*b^3)*c^2 - (81*B^4*a^2*b^2 - 65*A*B 
^3*a*b^3 + 9*A^2*B^2*b^4)*c)*x + 1/2*sqrt(1/2)*(B^3*b^7 - 17*B^3*a*b^5*c - 
 32*A^3*a^2*c^5 + 16*(18*A*B^2*a^3 - 3*A^2*B*a^2*b + A^3*a*b^2)*c^4 - 2*(7 
2*B^3*a^3*b + 72*A*B^2*a^2*b^2 - 12*A^2*B*a*b^3 + A^3*b^4)*c^3 + (88*B^3*a 
^2*b^3 + 18*A*B^2*a*b^4 - 3*A^2*B*b^5)*c^2 - (B*b^8*c^3 + 256*(3*B*a^4 - A 
*a^3*b)*c^7 - 64*(10*B*a^3*b^2 - 3*A*a^2*b^3)*c^6 + 48*(4*B*a^2*b^4 - A*a* 
b^5)*c^5 - 4*(6*B*a*b^6 - A*b^7)*c^4)*sqrt((B^4*b^4 + A^4*c^4 - 2*(9*A^2*B 
^2*a - 2*A^3*B*b)*c^3 + 3*(27*B^4*a^2 - 12*A*B^3*a*b + 2*A^2*B^2*b^2)*c^2 
- 2*(9*B^4*a*b^2 - 2*A*B^3*b^3)*c)/(b^6*c^6 - 12*a*b^4*c^7 + 48*a^2*b^2*c^ 
8 - 64*a^3*c^9)))*sqrt(-(B^2*b^5 - 12*(4*A*B*a^2 - A^2*a*b)*c^3 + (60*B^2* 
a^2*b - 12*A*B*a*b^2 + A^2*b^3)*c^2 - (15*B^2*a*b^3 - 2*A*B*b^4)*c + (b...
 
3.2.19.6 Sympy [F(-1)]

Timed out. \[ \int \frac {x^4 \left (A+B x^2\right )}{\left (a+b x^2+c x^4\right )^2} \, dx=\text {Timed out} \]

input
integrate(x**4*(B*x**2+A)/(c*x**4+b*x**2+a)**2,x)
 
output
Timed out
 
3.2.19.7 Maxima [F]

\[ \int \frac {x^4 \left (A+B x^2\right )}{\left (a+b x^2+c x^4\right )^2} \, dx=\int { \frac {{\left (B x^{2} + A\right )} x^{4}}{{\left (c x^{4} + b x^{2} + a\right )}^{2}} \,d x } \]

input
integrate(x^4*(B*x^2+A)/(c*x^4+b*x^2+a)^2,x, algorithm="maxima")
 
output
-1/2*((B*b^2 - (2*B*a + A*b)*c)*x^3 + (B*a*b - 2*A*a*c)*x)/((b^2*c^2 - 4*a 
*c^3)*x^4 + a*b^2*c - 4*a^2*c^2 + (b^3*c - 4*a*b*c^2)*x^2) + 1/2*integrate 
((B*a*b - 2*A*a*c + (B*b^2 - (6*B*a - A*b)*c)*x^2)/(c*x^4 + b*x^2 + a), x) 
/(b^2*c - 4*a*c^2)
 
3.2.19.8 Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 4538 vs. \(2 (292) = 584\).

Time = 1.40 (sec) , antiderivative size = 4538, normalized size of antiderivative = 13.51 \[ \int \frac {x^4 \left (A+B x^2\right )}{\left (a+b x^2+c x^4\right )^2} \, dx=\text {Too large to display} \]

input
integrate(x^4*(B*x^2+A)/(c*x^4+b*x^2+a)^2,x, algorithm="giac")
 
output
-1/2*(B*b^2*x^3 - 2*B*a*c*x^3 - A*b*c*x^3 + B*a*b*x - 2*A*a*c*x)/((c*x^4 + 
 b*x^2 + a)*(b^2*c - 4*a*c^2)) + 1/16*((2*b^3*c^3 - 8*a*b*c^4 - sqrt(2)*sq 
rt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*b^3*c + 4*sqrt(2)*sqrt(b^2 
 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a*b*c^2 + 2*sqrt(2)*sqrt(b^2 - 4 
*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*b^2*c^2 - sqrt(2)*sqrt(b^2 - 4*a*c)* 
sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*b*c^3 - 2*(b^2 - 4*a*c)*b*c^3)*(b^2*c - 4* 
a*c^2)^2*A + (2*b^4*c^2 - 20*a*b^2*c^3 + 48*a^2*c^4 - sqrt(2)*sqrt(b^2 - 4 
*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*b^4 + 10*sqrt(2)*sqrt(b^2 - 4*a*c)*s 
qrt(b*c + sqrt(b^2 - 4*a*c)*c)*a*b^2*c + 2*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt( 
b*c + sqrt(b^2 - 4*a*c)*c)*b^3*c - 24*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + 
 sqrt(b^2 - 4*a*c)*c)*a^2*c^2 - 12*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sq 
rt(b^2 - 4*a*c)*c)*a*b*c^2 - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 
 - 4*a*c)*c)*b^2*c^2 + 6*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4 
*a*c)*c)*a*c^3 - 2*(b^2 - 4*a*c)*b^2*c^2 + 12*(b^2 - 4*a*c)*a*c^3)*(b^2*c 
- 4*a*c^2)^2*B - 4*(sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a*b^4*c^3 - 8* 
sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^2*b^2*c^4 - 2*sqrt(2)*sqrt(b*c + 
 sqrt(b^2 - 4*a*c)*c)*a*b^3*c^4 - 2*a*b^4*c^4 + 16*sqrt(2)*sqrt(b*c + sqrt 
(b^2 - 4*a*c)*c)*a^3*c^5 + 8*sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^2*b 
*c^5 + sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a*b^2*c^5 + 16*a^2*b^2*c^5 
- 4*sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^2*c^6 - 32*a^3*c^6 + 2*(b...
 
3.2.19.9 Mupad [B] (verification not implemented)

Time = 10.98 (sec) , antiderivative size = 12396, normalized size of antiderivative = 36.89 \[ \int \frac {x^4 \left (A+B x^2\right )}{\left (a+b x^2+c x^4\right )^2} \, dx=\text {Too large to display} \]

input
int((x^4*(A + B*x^2))/(a + b*x^2 + c*x^4)^2,x)
 
output
- ((x^3*(A*b*c - B*b^2 + 2*B*a*c))/(2*c*(4*a*c - b^2)) + (x*(2*A*a*c - B*a 
*b))/(2*c*(4*a*c - b^2)))/(a + b*x^2 + c*x^4) - atan(((((2048*A*a^4*c^6 - 
32*A*a*b^6*c^3 + 16*B*a*b^7*c^2 - 1024*B*a^4*b*c^5 + 384*A*a^2*b^4*c^4 - 1 
536*A*a^3*b^2*c^5 - 192*B*a^2*b^5*c^3 + 768*B*a^3*b^3*c^4)/(8*(b^6*c - 64* 
a^3*c^4 - 12*a*b^4*c^2 + 48*a^2*b^2*c^3)) - (x*(-(B^2*b^11 + A^2*b^9*c^2 + 
 A^2*c^2*(-(4*a*c - b^2)^9)^(1/2) + B^2*b^2*(-(4*a*c - b^2)^9)^(1/2) + 2*A 
*B*b^10*c - 96*A^2*a^2*b^5*c^4 + 512*A^2*a^3*b^3*c^5 + 288*B^2*a^2*b^7*c^2 
 - 1504*B^2*a^3*b^5*c^3 + 3840*B^2*a^4*b^3*c^4 + 3072*A*B*a^5*c^6 - 27*B^2 
*a*b^9*c - 9*B^2*a*c*(-(4*a*c - b^2)^9)^(1/2) - 768*A^2*a^4*b*c^6 - 3840*B 
^2*a^5*b*c^5 + 192*A*B*a^2*b^6*c^3 - 128*A*B*a^3*b^4*c^4 - 1536*A*B*a^4*b^ 
2*c^5 + 2*A*B*b*c*(-(4*a*c - b^2)^9)^(1/2) - 36*A*B*a*b^8*c^2)/(32*(4096*a 
^6*c^9 + b^12*c^3 - 24*a*b^10*c^4 + 240*a^2*b^8*c^5 - 1280*a^3*b^6*c^6 + 3 
840*a^4*b^4*c^7 - 6144*a^5*b^2*c^8)))^(1/2)*(16*b^7*c^3 - 192*a*b^5*c^4 - 
1024*a^3*b*c^6 + 768*a^2*b^3*c^5))/(2*(b^4*c + 16*a^2*c^3 - 8*a*b^2*c^2))) 
*(-(B^2*b^11 + A^2*b^9*c^2 + A^2*c^2*(-(4*a*c - b^2)^9)^(1/2) + B^2*b^2*(- 
(4*a*c - b^2)^9)^(1/2) + 2*A*B*b^10*c - 96*A^2*a^2*b^5*c^4 + 512*A^2*a^3*b 
^3*c^5 + 288*B^2*a^2*b^7*c^2 - 1504*B^2*a^3*b^5*c^3 + 3840*B^2*a^4*b^3*c^4 
 + 3072*A*B*a^5*c^6 - 27*B^2*a*b^9*c - 9*B^2*a*c*(-(4*a*c - b^2)^9)^(1/2) 
- 768*A^2*a^4*b*c^6 - 3840*B^2*a^5*b*c^5 + 192*A*B*a^2*b^6*c^3 - 128*A*B*a 
^3*b^4*c^4 - 1536*A*B*a^4*b^2*c^5 + 2*A*B*b*c*(-(4*a*c - b^2)^9)^(1/2) ...